Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Food ; 5(4): 281-287, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38605131

RESUMEN

Food texture, along with taste and odour, is an important factor in determining food flavour. However, the physiological properties of oral texture perception require greater examination and definition. Here we explore recent trends and perspectives related to mouthfeel and its relevance in food flavour perception, with an emphasis on the biophysical point of view and methods. We propose that atomic force microscopy, combined with other biophysical techniques and more traditional food science approaches, offers a unique opportunity to study the mechanisms of mouthfeel at cellular and molecular levels. With this knowledge, food composition could be modified to develop healthier products by limiting salt, sugar, fat and calories while maintaining sensory qualities and consumer acceptance.


Asunto(s)
Microscopía de Fuerza Atómica , Boca , Percepción del Gusto , Gusto , Microscopía de Fuerza Atómica/métodos , Humanos , Gusto/fisiología , Percepción del Gusto/fisiología
2.
Food Chem ; 448: 139157, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38569411

RESUMEN

About half of the world's population is infected with the bacterium Helicobacter pylori. For colonization, the bacterium neutralizes the low gastric pH and recruits immune cells to the stomach. The immune cells secrete cytokines, i.e., the pro-inflammatory IL-17A, which directly or indirectly damage surface epithelial cells. Since (I) dietary proteins are known to be digested into bitter tasting peptides in the gastric lumen, and (II) bitter tasting compounds have been demonstrated to reduce the release of pro-inflammatory cytokines through functional involvement of bitter taste receptors (TAS2Rs), we hypothesized that the sweet-tasting plant protein thaumatin would be cleaved into anti-inflammatory bitter peptides during gastric digestion. Using immortalized human parietal cells (HGT-1 cells), we demonstrated a bitter taste receptor TAS2R16-dependent reduction of a H. pylori-evoked IL-17A release by up to 89.7 ± 21.9% (p ≤ 0.01). Functional involvement of TAS2R16 was demonstrated by the study of specific antagonists and siRNA knock-down experiments.


Asunto(s)
Helicobacter pylori , Interleucina-17 , Proteínas de Plantas , Receptores Acoplados a Proteínas G , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Interleucina-17/metabolismo , Interleucina-17/genética , Interleucina-17/inmunología , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/química , Gusto , Digestión , Péptidos/farmacología , Péptidos/química , Péptidos/metabolismo , Mucosa Gástrica/metabolismo , Mucosa Gástrica/microbiología , Infecciones por Helicobacter/microbiología , Infecciones por Helicobacter/metabolismo , Infecciones por Helicobacter/inmunología , Línea Celular
3.
J Agric Food Chem ; 70(37): 11591-11602, 2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36054030

RESUMEN

Eating satiating, protein-rich foods is one of the key aspects of modern diet, although a bitter off-taste often limits the application of some proteins and protein hydrolysates, especially in processed foods. Previous studies of our group demonstrated that bitter-tasting food constituents, such as caffeine, stimulate mechanisms of gastric acid secretion as a signal of gastric satiation and a key process of gastric protein digestion via activation of bitter taste receptors (TAS2Rs). Here, we tried to elucidate whether dietary non-bitter-tasting casein is intra-gastrically degraded into bitter peptides that stimulate mechanisms of gastric acid secretion in physiologically achievable concentrations. An in vitro model of gastric digestion was verified by casein-fed pigs, and the peptides resulting from gastric digestion were identified by liquid chromatography-time-of-flight-mass spectrometry. The bitterness of five selected casein-derived peptides was validated by sensory analyses and by an in vitro screening approach based on human gastric parietal cells (HGT-1). For three of these peptides (YFYPEL, VAPFPEVF, and YQEPVLGPVRGPFPIIV), an upregulation of gene expression of TAS2R16 and TAS2R38 was observed. The functional involvement of these TAS2Rs was verified by siRNA knock-down (kd) experiments in HGT-1 cells. This resulted in a reduction of the mean proton secretion promoted by the peptides by up to 86.3 ± 9.9% for TAS2R16kd (p < 0.0001) cells and by up to 62.8 ± 7.0% for TAS2R38kd (p < 0.0001) cells compared with mock-transfected cells.


Asunto(s)
Caseínas , Gusto , Animales , Cafeína/metabolismo , Caseínas/metabolismo , Digestión , Ácido Gástrico/metabolismo , Humanos , Péptidos/metabolismo , Hidrolisados de Proteína/metabolismo , Protones , ARN Interferente Pequeño/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Porcinos , Gusto/genética
4.
J Agric Food Chem ; 68(38): 10287-10298, 2020 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-31508943

RESUMEN

During the last few years, key taste-active compounds have been isolated and identified by means of a combination of a time- and lab-consuming successive fractionation and sensory characterization. Because the peptidome of fermented, protein-rich food is very complex, new strategies are necessary to accelerate the identification of taste-active peptides. In this study, two advanced mass spectrometric approaches were developed to comprehensively map the bitter tasting peptidome of fermented foods by data-independent acquisition (DIA) using sequential window acquisition of all theoretical fragment ion-mass spectrometry (SWATH-MS) and an in silico-assisted triple quadrupole (QQQ)-based targeted proteomics approach, separately. Application of both techniques on two fresh cheese samples as well as on crude medium-pressure liquid chromatography fractions exhibiting intense bitter taste, followed by filtering the hydrophobic target peptides (Q value of ≥1200 cal/mol) showing a signal-to-noise ratio of ≥10 and a fold change of ≥3 when comparing the less bitter to the more bitter cheese sample, revealed the candidate bitter peptides, which were then validated by means of synthetic reference peptides and human sensory evaluation. The bitter peptides were then quantitated in the fresh cheese samples as well as in a series of dairy products by means of QQQ-MS and SWATH-MS, separately. Although the QQQ-MS method showed 2-80-fold lower limits of quantitation (LOQ), the SWATH-MS method could be shown for the first time to enable the comprehensive quantitation of all sensorially relevant key bitter peptides with LOQs far below the bitter taste recognition concentration of each peptide.


Asunto(s)
Queso/análisis , Aromatizantes/química , Espectrometría de Masas/métodos , Péptidos/química , Humanos , Gusto
5.
J Agric Food Chem ; 66(42): 11092-11104, 2018 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-30289254

RESUMEN

Aiming at the identification of the key bitter peptides in fermented foods, a new approach, coined "sensoproteomics", was developed and applied to fresh cheese samples differing in bitter taste intensity. By means of MPLC fractionation of the water-soluble cheese extracts in combination with taste dilution analysis, complex fractions with intense bitter taste were located and then screened by UPLC-MS/MS for the entire repertoire of ∼1600 candidate peptides, extracted from a literature meta-analysis on dairy products, by using a total of 120 selected reaction monitoring methods computed in silico. A total of 340 out of the 1600 peptides were found in the cheese samples, among which 17 peptides were identified as candidate bitter peptides by considering only peptides that were located in the bitter-tasting MPLC fractions (signal-to-noise ratio: ≥10) with a fold-change of ≥3 when comparing the less bitter to the more bitter cheese sample and that were validated by comparison with the synthetic reference peptides. While EIVPNS[phos]VEQK (αs1-CN70-78) and INTIASGEPT (κ-CN122-131) did not exhibit any bitter taste up to 2000 µmol/L, 15 of the 17 target peptides showed bitter taste thresholds ranging from 30 (ARHPHPHLSFM, κ-CN96-106) to 690 µmol/L (IQKEDVPS, αs1-CN81-88). Finally, quantitative peptide analysis followed by calculation of dose-overthreshold factors revealed a primary contribution of MAPKHKEMPFPKYPVEPF (ß-CN102-119) and ARHPHPHLSFM (κ-CN96-106) to the perceived bitter taste of the fresh cheese samples. Finally, the evolution of the bitter peptides throughout two different fresh cheese manufacturing processes was quantitatively recorded.


Asunto(s)
Queso/análisis , Alimentos Fermentados/análisis , Péptidos/química , Péptidos/metabolismo , Gusto , Secuencia de Aminoácidos , Aminoácidos/química , Inspección de Alimentos , Calidad de los Alimentos , Humanos , Proteómica/métodos , Espectrometría de Masas en Tándem/métodos
6.
J Agric Food Chem ; 62(38): 9239-45, 2014 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-25186288

RESUMEN

This is the first application of fully automated, preparative, two-dimensional HPLC combined with sensory analysis for taste compound discovery using a sweet and licorice-like bitter-tasting aniseed extract as an example. Compared to the traditional iterative fractionation of food extracts by sensory-guided sequential application of separation techniques, the fully automated 2D-HPLC allowed the comprehensive separation of the aniseed extract into 256 subfractions and reduced the fractionation time from about 1 week to <1day. Using a smart sensory strategy to locate high-impact fractions, e.g., by evaluating first-dimension fractions by reconstituting them from second-dimension subfractions, followed by straightforward application of the taste dilution analysis on the individual second-dimension subfractions revealed the sweet-tasting trans-anethole and the bitter-tasting trans-pseudoisoeugenol 2-methylbutyrate, showing recognition thresholds of 70 and 68 µmol/L, respectively, as the primary orosensory active compounds in aniseed. 2D-HPLC combined with smart sensory analysis seems to be a promising strategy to speed the discovery of the key players imparting the attractive taste of foods.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Aromatizantes/análisis , Pimpinella/química , Semillas/química , Cromatografía Líquida de Alta Presión/instrumentación , Humanos , Gusto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...